Tuesday, July 12, 2011

Proton transfer via a transient linear water-molecule chain in a membrane protein

Erik Freier, Steffen Wolf, and Klaus Gerwert



High-resolution protein ground-state structures of proton pumps and channels have revealed internal protein-bound water molecules. Their possible active involvement in protein function has recently come into focus. An illustration of the formation of a protonated protein-bound water cluster that is actively involved in proton transfer was described for the membrane protein bacteriorhodopsin (bR) [Garczarek F, Gerwert K (2006) Nature 439:109–112]. Here we show through a combination of time-resolved FTIR spectroscopy and molecular dynamics simulations that three protein-bound water molecules are rearranged by a protein conformational change that resulted in a transient Grotthuss-type proton-transfer chain extending through a hydrophobic protein region of bR. This transient linear water chain facilitates proton transfer at an intermediate conformation only, thereby directing proton transfer within the protein. The rearrangement of protein-bound water molecules that we describe, from inactive positions in the ground state to an active chain in an intermediate state, appears to be energetically favored relative to transient incorporation of water molecules from the bulk. Our discovery provides insight into proton-transfer mechanisms through hydrophobic core regions of ubiquitous membrane spanning proteins such as G-protein coupled receptors or cytochrome C oxidases.


Journal: Proceedings of the National Academy of Sciences

Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle

Pradeep K. Luther, Hanspeter Winkler, Kenneth Taylor, Maria E. Zoghbi, Roger Craig, Raúl Padrón, John M. Squire, and Jun Liu 


Myosin-binding protein C (MyBP-C) is a thick filament protein playing an essential role in muscle contraction, and MyBP-C mutations cause heart and skeletal muscle disease in millions worldwide. Despite its discovery 40 y ago, the mechanism of MyBP-C function remains unknown. In vitro studies suggest that MyBP-C could regulate contraction in a unique way—by bridging thick and thin filaments—but there has been no evidence for this in vivo. Here we use electron tomography of exceptionally well preserved muscle to demonstrate that MyBP-C does indeed bind to actin in intact muscle. This binding implies a physical mechanism for communicating the relative sliding between thick and thin filaments that does not involve myosin and which could modulate the contractile process.

DOI

Journal: Proceedings of the National Academy of Sciences










Friday, July 8, 2011

Biological mechanisms, one molecule at a time


Ignacio Tinoco, Jr and Ruben L. Gonzalez, Jr

The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome.


Journal: Genes and Development

Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment

Joel E. Graham, Melinda E. Clark, Dana C. Nadler, Sarah Huffer, Harshal A. Chokhawala, Sara E. Rowland, Harvey W. Blanch, Douglas S. Clark, and Frank T. Robb


Despite extensive studies on microbial and enzymatic lignocellulose degradation, relatively few Archaea are known to deconstruct crystalline cellulose. Here we describe a consortium of three hyperthermophilic archaea enriched from a continental geothermal source by growth at 90 °C on crystalline cellulose, representing the first instance of Archaea able to deconstruct lignocellulose optimally above 90 °C. Following metagenomic studies on the consortium, a 90 kDa, multidomain cellulase, annotated as a member of the TIM barrel glycosyl hydrolase superfamily, was characterized. The multidomain architecture of this protein is uncommon for hyperthermophilic endoglucanases, and two of the four domains of the enzyme have no characterized homologues. The recombinant enzyme has optimal activity at 109 °C, a half-life of 5 h at 100 °C, and resists denaturation in strong detergents, high-salt concentrations, and ionic liquids. Cellulases active above 100 °C may assist in biofuel production from lignocellulosic feedstocks by hydrolysing cellulose under conditions typically employed in biomass pretreatment.


DOI


Journal: Nature Communications

Wednesday, July 6, 2011

The ribosome uses two active mechanisms to unwind messenger RNA during translation

Xiaohui Qu, Jin-Der Wen, Laura Lancaster, Harry F. Noller, Carlos Bustamante, and Ignacio Tinoco


The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting1, 2, the modulation of protein expression levels3, 4, ribosome localization5 and co-translational protein folding6. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases7, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily1, 2. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.

DOI

Journal: Nature

Graphene Spintronic Devices with Molecular Nanomagnets



Andrea Candini, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer, and Marco Affronte


The possibility to graft nano-objects directly on its surface makes graphene particularly appealing for device and sensing applications. Here we report the design and the realization of a novel device made by a graphene nanoconstriction decorated with TbPc2 magnetic molecules (Pc = phthalocyananine), to electrically detect the magnetization reversal of the molecules in proximity with graphene. A magnetoconductivity signal as high as 20% is found for the spin reversal, revealing the uniaxial magnetic anisotropy of the TbPc2 quantum magnets. These results depict the behavior of multiple-field-effect nanotransistors with sensitivity at the single-molecule level.



Journal: Nano Letters

Tuesday, July 5, 2011

A Novel Method for Measuring Tension Generated in Stress Fibers by Applying External Forces

Shukei Sugita, Taiji Adachi,Yosuke Ueki,and Masaaki Sato

The distribution of contractile forces generated in cytoskeletal stress fibers (SFs) contributes to cellular dynamic functions such as migration and mechanotransduction. Here we describe a novel (to our knowledge) method for measuring local tensions in SFs based on the following procedure: 1), known forces of different magnitudes are applied to an SF in the direction perpendicular to its longitudinal axis; 2), force balance equations are used to calculate the resulting tensions in the SF from changes in the SF angle; and 3), the relationship between tension and applied force thus established is extrapolated to an applied force of zero to determine the preexisting tension in the SF. In this study, we measured tensions in SFs by attaching magnetic particles to them and applying known forces with an electromagnetic needle. Fluorescence microscopy was used to capture images of SFs fluorescently labeled with myosin II antibodies, and analysis of these images allowed the tension in the SFs to be measured. The average tension measured in this study was comparable to previous reports, which indicates that this method may become a powerful tool for elucidating the mechanisms by which cytoskeletal tensions affect cellular functions.


Journal: Biophysical Journal