Monday, June 4, 2012

Rocket Launcher Mechanism of Collaborative Actin Assembly Defined by Single-Molecule Imaging


Dennis Breitsprecher, Richa Jaiswal, Jeffrey P. Bombardier, Christopher J. Gould, Jeff Gelles, and Bruce L. Goode

Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament.

DOI

Journal: Science

Revealing the Angular Symmetry of Chemical Bonds by Atomic Force Microscopy


Joachim Welker, and Franz J. Giessibl


We have measured the angular dependence of chemical bonding forces between a carbon monoxide molecule that is adsorbed to a copper surface and the terminal atom of the metallic tip of a combined scanning tunneling microscope and atomic force microscope. We provide tomographic maps of force and current as a function of distance that revealed the emergence of strongly directional chemical bonds as tip and sample approach. The force maps show pronounced single, dual, or triple minima depending on the orientation of the tip atom, whereas tunneling current maps showed a single minimum for all three tip conditions. We introduce an angular dependent model for the bonding energy that maps the observed experimental data for all observed orientations and distances.


DOI


Journal: Science