Robert A. DiStasio, Jr., O. Anatole von Lilienfeld, and Alexandre Tkatchenko
Van der Waals (vdW) interactions are ubiquitous in molecules and condensed matter, and play a crucial role in determining the structure, stability, and function for a wide variety of systems. The accurate prediction of these interactions from first principles is a substantial challenge because they are inherently quantum mechanical phenomena that arise from correlations between many electrons within a given molecular system. We introduce an efficient method that accurately describes the nonadditive many-body vdW energy contributions arising from interactions that cannot be modeled by an effective pairwise approach, and demonstrate that such contributions can significantly exceed the energy of thermal fluctuations—a critical accuracy threshold highly coveted during molecular simulations—in the prediction of several relevant properties. Cases studied include the binding affinity of ellipticine, a DNA-intercalating anticancer agent, the relative energetics between the A- and B-conformations of DNA, and the thermodynamic stability among competing paracetamol molecular crystal polymorphs. Our findings suggest that inclusion of the many-body vdW energy is essential for achieving chemical accuracy and therefore must be accounted for in molecular simulations.
DOI
Journal: Proceedings of the National Academy of Sciences
No comments:
Post a Comment