Björn M. Burmann, Stefan H. Knauer, Anastasia Sevostyanova, Kristian Schweimer, Rachel A. Mooney, Robert Landick, Irina Artsimovitch, Paul Rösch
NusG homologs regulate transcription and coupled processes in all living organisms. The Escherichia coli (E. coli) two-domain paralogs NusG and RfaH have conformationally identical N-terminal domains (NTDs) but dramatically different carboxy-terminal domains (CTDs), a β barrel in NusG and an α hairpin in RfaH. Both NTDs interact with elongating RNA polymerase (RNAP) to reduce pausing. In NusG, NTD and CTD are completely independent, and NusG-CTD interacts with termination factor Rho or ribosomal protein S10. In contrast, RfaH-CTD makes extensive contacts with RfaH-NTD to mask an RNAP-binding site therein. Upon RfaH interaction with its DNA target, the operon polarity suppressor (ops) DNA, RfaH-CTD is released, allowing RfaH-NTD to bind to RNAP. Here, we show that the released RfaH-CTD completely refolds from an all-α to an all-β conformation identical to that of NusG-CTD. As a consequence, RfaH-CTD binding to S10 is enabled and translation of RfaH-controlled operons is strongly potentiated.
DOI
Journal: Cell
No comments:
Post a Comment